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High-voltage electrical trauma frequently leads to extensive and selective destruction 
of muscle and nerve tissue. In this paper, the mechanism of plasma membrane 
disruption due to the large transmembrane potentials imposed during electrical 
trauma is used to explain the particular susceptibility of muscle and nerve cells to 
damage. It is proposed that this vulnerability is partially due to the relatively large 
size of these cells. A distributed-parameter electric cable model of an elongated cell 
is used to examine the alteration of the transmembrane potential caused by a 60 Hz 
electric field applied parallel to the long axis of the cell. The maximum predicted 
transmembrane potential occurs at the ends of the cell and is strongly cell-size 
dependent. Theories are discussed which illustrate how this could explain the 
predisposition of skeletal muscle to cell membrane breakdown and rupture. The 
predicted effect of either close-neighboring cells in a tissue or cell contact with 
cortical bone is even greater induced transmembrane potentials and increased 
probability of rupture. This is the first hypothesis which explains the clinically- 
observed pattern of tissue damage resulting from electrical trauma. 

Introduction 

Major electrical t rauma produces a spectrum of  tissue injuries which range from 
the obvious thermal destruction of  tissue at the current entry and exit points to the 
gradual onset of  neurologic defects in the absence of  apparent  thermal injury (Sances 
et al., 1979; Farrell & Starr, 1968). Skeletal muscle and nerve cells seem most 
susceptible to electrical injury. Many of  the immediate  clinical signs of  electrical 
injury relate to neuromuscular  damage.  Intense muscular  spasm and rigor are often 
described by witnesses, and are frequent presenting signs at hospital admission 
(Jaffe, 1928). Extensive muscle injury is so common that reported major  l imb 
amputa t ion  rates of  65% are not unusual (Butler & Gant ,  1977). 

Joule heating is widely believed to mediate  the underlying cellular injury during 
electrical t rauma.  However,  not all clinical manifestations are readily explained in 
this way, in particular the increased susceptibility of  larger cells, such as skeletal 
muscle cells and nerve cells, to damage.  While fundamental  studies on the mecha-  
nisms of  thermal injury to cells do not suggest that larger cells are more vulnerable 
to thermal injury than smaller cell types (Moritz & Henriques,  1947; Moussa  et al., 
1979), substantial  theoretical evidence exists which suggests that these cells are more 
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vulnerable to plasma membrane rupture by electrical breakdown. The clinical 
evidence which suggests that muscle and nerve cell membrane rupture can occur 
in an electrical trauma includes the release of  large quantities of  myoglobin from 
the intracellular space (Baxter, 1970), and the elevated levels of  arachidonic acid 
production, suggesting increased intracellular free calcium (Robson et al., 1983). 
In many instances of electrical trauma, the imposed electric field in the tissue is of  
sufficient magnitude to cause electrical breakdown of  cell membranes and cell lysis 
(Lee & Koiodney, 1987). 

In this paper, it is proposed that the relatively high susceptibility of skeletal 
muscle cells to electrical injury is related to their large size compared with the less 
frequently injured connective tissue cells. It is demonstrated analytically that skeletal 
muscle cells oriented parallel to an applied d.c. electric field are subjected to an 
induced transmembrane potential which is greatest in magnitude at the cell ends 
and increases in magnitude with increasing cell length and radius. Large cells can 
exhibit significantly higher transmembrane potentials than smaller cell types in the 
same field. This is consistent with the predictions for nerve cells in a field (Tranchina 
& Nicholson, 1986). When the cells are subjected to sinusoidal fields at the commer- 
cial power frequency of 60 Hz, the magnitude of the induced transmembrane 
potential is less than that induced by d.c. fields of  the same amplitude. Furthermore, 
in a 60 Hz sinusoidal field, the effect of  cell charging modes is observed as the 
induced transmembrane potential is calculated for cells of  different lengths. It is 
observed that the induced transmembrane potential reaches a peak magnitude for 
cells of a specific size and is significantly less for smaller or larger cell lengths. 

Theories are briefly discussed which link the probability of cell membrane rupture 
to the square of  the induced transmembrane potential. Thus, the degree to which 
a muscle cell is vulnerable to membrane electrical breakdown and rupture is strongly 
cell-size dependent.  Finally, when the effects of  neighboring cells are considered, 
it is demonstrated that the maximum transmembrane potential increases with 
decreasing intercellular distance. The analysis can be interpreted to predict patterns 
of  damage within a muscle based on the cell's immediate environment. As will be 
shown, it appears to explain the clinical observation that muscle cells adjacent to 
bone have the greatest vulnerability to damage in an electrical trauma, while those 
adjacent to the fascial planes have the least vulnerability. 

Theory 

Major electrical trauma frequently involves the upper extremity, setting up current 
pathways as suggested in Fig. 1. In such instances, the long axes of  most of  the 
skeletal muscle and large nerve cells are oriented in the direction of the electric 
field lines. Characteristically, at frequencies much less than 1 MHz, mammalian cell 
membranes are highly insulating compared with the intracellular and extracellular 
fluids. As a consequence, currents established by low-frequency fields in the extracel- 
lular space are diverted around the cells, leading to enhancement of the induced 
transmembrane potentials. For a non-spherical cell in an electric field, the maximum 
induced transmembrane potential will depend on the cell's orientation with respect 
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FIG. 1. Illustration o f  current  path through upper  extremity dur ing a typical electrical accident.  Electric 
field lines are generally near  parallel to the major axis of  the skeletal muscle cells. 

to the electric field, reaching its greatest magnitude when the major axis of the cell 
is parallel to the average direction of the electric field. 

To illustrate the significance of cell size, a geometrically simple model of an 
elongated cell, such as the skeletal muscle cell in Fig. 2(a), is analyzed. The cell 
membrane is modeled as a cylindrical boundary separating two electrical conductors, 
which represent the intracellular and extracellular fluids. The membrane and the 
intracellular and extracellular fluids are assumed to be homogeneous and isotropic, 
and to have electrical properties that are independent of the applied field until 
membrane breakdown. 

Electrical properties of the plasma membrane can be represented by a series of 
parallel resistors and capacitors (Rail, 1977), as illustrated in Fig. 2(b). This lumped- 
parameter circuit model of the membrane is combined with the specified resistivities 
of the intracellular and extracellular media to result in the well-known cable circuit 
representation. In the presence of an applied uniform field E(t) in the 2 direction, 
a change in the transmembrane potential will be induced. Following the examples 
of Sten-Knudsen (1960), Ranck (1963), and Cooper (1984), the cable equations can 
be used to solve for the spatial distribution of the induced transmembrane potential. 
Because human skeletal muscle cells may have significant cross-sectional dimensions, 
this application of the cable model necessitates the use of a boundary condition 
which accounts for the transmembrane current through the ends of the cell. The 
induced transmembrane potential distribution will be solved for isolated muscle 
cells (Fig. 3(a)) and for cells within intact tissue (Fig. 3(b)) exposed to a uniform 
sinusoidal electric field of amplitude Eo. 
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FIG. 2. (a) Intact skeletal muscle cell harvested from rat flexor digitorum brevis muscle. Scale bar is 
200 IJ.m. Approximate cell length is 750 p.m. (b) Cable circuit model of the cell's electrical properties. 
Cell length is equal to 2L; cell radius is a. 

Analysis of  the circuit model leads to a differential equation for the induced 
transmembrane potential vm(z, t): 

arm(z, t) O2v,.(z, t) v,.(z, t ) + ' r , . - -  (1) 
Am Oz 2 at 

The space constant )tin and the time constant r,. are given by 

~/( 1 ), t to) cm Am = "ri +- - ' g , .  ~" = - - '  gm 
(2) 

where ri and ro are the resistivities (fUcm) of  the intracellular and extracellular 
fluids respectively, and Cm and gr. are the capacitance per unit length (F/cm)  and 
the conductance per unit length (mhos/cm) of the membrane respectively. For the 
case of  a single cell in an infinitely extending bath of  extracellular fluid, ro is 
negligible compared with r~, since the extracellular space is much greater than the 
intracellular space. However, when the effects of neighboring cells are considered, 



T I S S U E  I N J U R Y  I N  E L E C T R I C A L  T R A U M A  227 

o) (b) 

Q Q 

G G 

J _ • [ 

(c) • 

FIG. 3. (a) Isolated muscle cell in a uni form electric field o f  ampli tude Eo driven by an a.c. voltage 
source o f  ampl i tude  V. (b) Intact  muscle tissue in the same field. (c) Cross section o f  a hexagonal  array 
of  parallel, e longated cells, i l lustrating the cell radius a and  the extracellular fluid radius b. 

this approximation is no longer valid. For  the isolated cell case, the space constant 
can be expressed in terms of  the cell radius (a) ,  the cell membrane thickness (Sin), 
and the conductivities o f  the intracellular fluid (o'i) and the membrane (Crm): 

. / ( aS~cr,~. 
'~" = ~ / \  2o-,,, / (3) 

Because power line a.c. frequencies are of  interest in this study, the problem wil l  
be solved for the sinusoidal steady state: 

E(t) = Re {Eo e j~"} (4) 

and 

v . ( z ,  t)  = R e  (v . ( z )  e J°"}, (5) 
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where V,, is a complex amplitude and Eo is assumed real. In this case, the differential 
equation simplifies to 

A~ d2V'~(z-~) - Vm(z), (6) 
dz 2 

where 

An appropriate solution is 

,2 x~  
A m - 1 +jwr,," (7) 

Vm(z) = A sinh ( z / h ' ) ,  (8) 

where A is a constant to be determined from the boundary conditions. The boundary 
conditions constraining V,.(z) can be determined from Kirchhott 's voltage law, 

d V~(z) 
r,L(z) + rflo(z), (9) 

dz 

where l i(z)  is the complex amplitude of  the total current in the ~ direction inside 
the cell (ii(z, t)), and lo(z) is the complex amplitude of  the total current in the 
direction outside the cell (io(z, t)). 

At z = L, charge conservation requires 

d 
Gj , , , (L ,  t) - i,(L, t) + - ~  [rmaj 'm(L ,  t) - ~',i,(L, t)] = 0. (10) 

The parameter  ~'~ = ei/~r~ is the charge relaxation time constant reflecting the electrical 
properties of cytoplasm. The parameter Ge is the conductance of  that portion of  
the membrane which "caps"  the end of  the cell. It is assumed that the magnitude 
of  the induced transmembrane potential is approximately constant over the entire 
ends of  the cell at Izl = L. The error produced by this approximation will be examined 
later in this section. Taking the time derivative in equation (10) and recognizing 
that wr~ << 1 at 60 Hz leads to the condition 

I , (+L) = +(1 +jw~', .)GeV,.(+L). (11) 

For the isolated cell case, it is assumed that Io(z) >> L(z)  because the extracellular 
space is much larger than the intracellular space. Therefore, the product  roIo(z) can 
be assumed to be approximately constant, leading to the condition 

rolo(z) ~ 17,o. (12) 

The constant A can be determined by substituting the boundary conditions (11) 
and (12) into equation (9) and evaluating at z = L. Thus, 

A'~Eo sinh ( z / h ' )  
V,.(z) - (13) 

cosh ( L / A ' )  1 + A'r i (1  +joor,,,)Ge tanh ( L / A ' ) "  
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With the exception of the term which takes into account the end boundary 
condition, the form of the solution is consistent with Cooper (1984). In the limit 
that L >> Am, the end condition of equation (11) is insignificant and equation (13) 
gives the same prediction as Cooper. However, when L<< A,, the end condition is 
significant. In this limit, it is expected that the intracellular current is approximately 
independent of position z. That is, the current entering the cytoplasm of a short cell 
originates mostly at the end of the cell, with negligible current entering through the 
sides. Thus, the transmembrane potential changes linearly along the length of the 
cell. This behavior can be readily appreciated from equation (13) by analysis of the 
L<< A,, case in the d.c. limit. This predicts that 

Rm 
V,.(z)-~ 2Eoz for L/am<< 1, (14) 

Ri + 2R,, 

where R,. = 1/Ge is the resistance of each of the endcaps of the cell and Ri =2Lri 
is the resistance of the cytoplasm inside the cell. For z = L, V,.(L) is expressed as 
a fraction of the total voltage across the cell (2LEo) determined by the voltage 
divider R,./(R~ + 2R,,). Thus, equation (13) appears to be reasonably valid over the 
full range of typical skeletal muscle cell sizes. 

The error introduced in the assumption of a uniform transmembrane potential 
( V,, (+L)) over the total surface of the ends of the cell can be deduced for the worst 
case of a cell having hemispherical ends. From the solution for a spherical cell 
( L =  a) in a uniform field Eo, the magnitude of the potential variation over the 
hemispherical ends is approximately 3Eoa, leading to an underestimate of the 
maximum transmembrane potential by about 50% in equation (14). For elongated 
cells ( L >  a) with spherical ends, the variation will not exceed this amount, and 
will quickly become negligible compared with the total voltage drop across the cell 
as the length-to-diameter ratio increases. 

For cells within intact tissue subjected to an electric field, the previous analysis 
can be modified to include the effects of neighboring cells on the induced transmem- 
brane potential. The cells are assumed to be ordered parallel to each other in a 
hexagonal array as illustrated in Fig. 3(c). To facilitate the comparison of induced 
transmembrane potential in tissue with the case of  isolated cells, the quantity Ve/2L 
is used as the "source" term, where Vc is the voltage drop across the full length of  
a cell. For the isolated cell case, Vc/2L is constrained to be Eo in the cable model 
analysis. For the case of an intact muscle bathed in physiologic fluid with an applied 
electric field amplitude 17.o far away from the muscle, Vc/2L will be greater than Eo 
by a factor which depends on the degree to which the field is excluded from .the 
intact muscle due to its lower conductivity. 

In this tissue model, each cell is surrounded by a volume of extracellular fluid. 
By symmetry, no current crosses the boundary into the adjacent extracellular region. 
This conveniently isolates each cell from its neighbors for the purposes of the 
analysis. Here, the boundaries are approximated by cylinders of radius b as indicated 
in Fig. 3(c). The total current I r  within each cell's region consists of the intracellular 
current Ii(z) and the extracellular current Io(Z): 

/7- = l,(z) + Io(z). (15) 
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Longitudinal current in the membrane is ignored because the membrane has 
negligible cross-sectional area. The cross-sectional area of  extracellular space will 
determine the extracellular resistivity ro. Generally, for cells that are not on the 
muscle surface, ro is not negligible compared with r~ and significantly affects the 
value of  the space constant in equation (2). In addition, the extracellular electric 
field amplitude between muscle cells is not constant in z. Therefore, the approxima- 
tion of  equation (12) is no longer correct. 

The solution form of equation (8) is unchanged but retains a modified coefficient 
A' to be determined. Kirchhoff's law, equation (9), provides 

l r  = l , ( z = 0 ) ( l +  ~ )  A' 
ro/ roA " (16) 

By symmetry, the current inside a cell at z = 0 must be the sum of the current 
entering from the end (Ie) and from the sides (I,). le is simply I~(-L), as expressed 
in equation (I 1). I, can be found by 

i ° I~=g,~(l+jwrm) V,~(z) dz=h 'A 'g , , , ( l+ jwz , , , ) [cosh(L /h ' ) - l ] .  (17) 
-L-- 

Equations (15)-(17) can be solved for the constant A'. Knowing A', the total 
currents inside (L(z)) and outside (Io(z)) the cell can be derived. Integrating either 
riI~(z) or rolo(z) over the total length of  the cell leads to V~ in terms of  IT. Thus 

gc A "(ro + ri)/ri sinh ( z / h ' )  
V m ( z )  - (18) 

2L cosh ( L / A ' )  1 + h ' ( ( r ,  + ro)(1 +jwz,,)Ge + ro/(Lr,)) tanh (L /A ' ) "  

Results 

Equations (13) and (18) were used to examine the variation of  the transmembrane 
potential with cell size for the case of isolated cells and variation with both cell size 
and intracellular spacing for the case of  cells within intact muscle. Typical values 
for the properties of  human skeletal muscle cells used in our calculations are 
(Schanne & Ruiz P.-Ceretti, 1978): 

Cell membrane thickness: ~5,, ~ 10 -6 cm 
Cell membrane capacitance: C,, = 3-6 ~ F / c m  2 
Cell membrane conductance: G,, ~ 1.0-2.5 x 10 -4 mhos /cm 2 
Intracellular fluid permittivity: ei = 80co, eo = 8.854 x 10 -14 F /cm 
Intracellular fluid conductivity: o-i = 0.01 mho/cm.  

Using average values for human skeletal muscle cells, ~oz,. = wC,./G,, is >1 for 
frequencies greater than approximately 10 Hz. Thus, in the sinusoidal steady state 
at standard commercial power frequencies (50-60 Hz), wz,. cannot be neglected 
and the transmembrane potential and the space constant remain complex quantities. 
The magnitude of the induced transmembrane potential V,,(z) at 60 Hz was calcu- 
lated from equation (13) for isolated skeletal muscle cells of  several arbitrary lengths 
with a constant radius 100 i~m. The results are plotted in Fig. 4(a) for cells of  length 
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FIG. 4. Plot of  the magnitude of  V,.(z) at 60 Hz against position on the cell of length 2L for radius 
100 p.m, and (a) for cell lengths 0-2A,., 0-6Am, a,., and (b) for longer cell lengths X,., 2-0A,., 3.0a,., 
4-0A,., 6.0Am and 8-0A,., The ceils are centered on the z-axis. 

0.2A,,, 0-6Am, Am, and in Fig. 4(b) for cells of  length 1.0A,,, 2.0A,,, 3.0Am, 4.0A,., 
6.0Am, and 8.0A,,. 

For cells that are short compared with their space constant, the induced transmem- 
brane potential varies linearly with z, is constrained by symmetry to be zero at the 
origin and reaches a maximum at the cell ends. For longer cells, the transmembrane 
potential has a more exponential dependence,  which indicates that the imposed 
transmembrane current is disproportionately concentrated toward the ends. Because 
the maximum imposed  transmembrane potential magnitude (Vmax) occurs at the 
ends of  the cell, we define 

Vmax = I V,. ( -L ) [  = I Vm (L)I. (19) 

The extent to which cell structure leads to intramembrane field intensification 
can be appreciated from equation (13). If  the cell membrane conductivity were 
equal to that of  the cytoplasm or extracellular fluid, then Vmax would equal E,,&,,. 
If the cell membrane were perfectly insulating, Vmax would equal EoL For muscle 
cells with characteristic membrane properties which are short enough that the 
resistance of  the membrane is infinite compared with the cytoplasm, Vmax is equal 
to EoL. For longer cells, the maximum value of  Vm.x reaches Eol,~'l, because the 
space constant A" reflects the value of  the membrane conductivity relative to the 
conductivity of  the intracellular and extracellular fluid. 

In the sinusoidal steady state, Vmax does not increase monotonically with cell 
length, as expected for the d.c. case. Instead, in the L co-ordinate, Vm~x behaves as 
a heavily damped oscillator superimposed on the d.c. solution. It reaches its first 
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FIG. 5. (at Absolute magnitude of  the induced transmembrane potential at the end of  the muscle cell 
(Vmax) increases with cell length, reaches a frequency-dependent maximum value, then decreases to a 
plateau limiting value of  IA'[Eo for very long cells. (b) Maximum transmembrane potential increases 
with cell radius, reaching the maximum value predicted for electrically short cells (equation (14)). (c) 
Classification of  the electrical properties of  cells on the basis o f  their dimensions. 

and only significant maximum at 

x/~-rrA m 
L ~ 2 x / - I  + ( I  + to2~'2) ° 's '  (20) 

which is determined by the frequency, cell radius and the electrical properties of 
the membrane. Then Vmax decreases to a plateau oflA ',.leo. This behavior is illustrated 
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illustrated in Fig. 5(a). At 60 Hz the maximum occurs at L~0"86Am and IA'IEo is 
approximately one-third AmEo. 

For long cells Vm,x is strongly dependent on cell radius. For short cells (L<< As), 
Vm,x is independent of cell radius. However, as the radius increases, the length of 
the cell over which membrane resistance governs the intracellular current increases. 
This added length allows a higher potential (Vmax) to be imposed across the ends 
of the cell. 

These results suggest a classification of cells into 3 groups, depending on their 
electrical properties. The electrically long cells, having large length-to-radius ratios, 
have a Vm,~ which is independent of length, but increases with radius. The electrically 
short cells, having small length-to-radius ratios, have a Vmax which is independent 
of radius, but increases with length. Cells having dimensions between these two 
limits have a Vma~ which increases with both length and radius. Figure 5(c) illustrates 
approximate boundaries for these classifications. 

The effect of adjacent cells is fundamentally to limit the extracellular space 
available to each cell. This results in an increase in the maximum transmembrane 
potential for any given cell length and radius. The smaller the extracellular space, 
the greater the increase. This is illustrated in Fig. 6 where Vm,~ is plotted as a 
function of b/a for a cell of length 10 mm (L= 5 mm) and radius 50 I~m. This result 

300 000 

~ 200000 

x E 

I 0 0  0 0 0  i I l 
1.0 2,0 3.0 

b/a 

FIG. 6. M a x i m u m  t ransmembrane  potential (Vmax) for an array o f  cells ( L = 5 mm,  a = 50 Izm) increases 
with a decrease in the extracellular spacing, starting (for b / a  >> 1) at that predicted for isolated cells, 
and ending (for b / a  -~ 1) at that  predicted by equat ion (21). 
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can be readily interpreted. When a cell is isolated in extracellular fluid, the low 
resistance of  the extracellular fluid acts to short out the voltage drop across the 
length of the cell. In other words, the current tends to flow around rather than 
through the cell. When other cells are brought in close proximity, the resistance of  
the extracellular path increases and more current will flow end-to-end through the 
cell. This results in a greater transmembrane potential at the ends of  the cell. In 
addition, because the space constant A" is decreased by an increased to, the induced 
transmembrane potential is more confined near the ends of  the cells. 

As the ratio b/a becomes large, that is, as ro becomes small, Vmax approaches 
that predicted for an isolated cell of  the same dimensions. As the ratio b/a 
approaches unity, that is, as ro approaches infinity, the cell appears to be a lumped 
three-element voltage divider. Thus, in the d.c. case, 

V~ 1/(2Lr,) 
Vmax ~ - -  when b/a = 1. (21) 

2 Ge/2+l/(2Lr~)'  

The voltage divider does not depend on cell radius, and is in fact the same voltage 
divider relationship derived for isolated cells of  short length to radius ratios (equation 
(14)). This is not surprising since a bundle of  cells with no extracellular space 
(ro =oo) will behave like a single cell of  the same length but greater radius. Thus, 
the response can be described by the isolated cell model, with Eo = Vc/2L. 

Discussion 

The previous analysis shows that, in the presence of an imposed a.c. electric field, 
cells of a specific frequency-dependent size oriented parallel to the field experience 
a higher transmembrane potential than shorter or longer cells or cells oriented 
perpendicular to the field. Also, for cells not electrically short, those of  large radius 
can experience significantly higher transmembrane potentials than cell types of  
smaller radius. That this larger potential causes an increased susceptibility to cell 
membrane breakdown and rupture is well established. 

Two types of  membrane breakdown due to an applied electric field have been 
experimentally demonstrated (see Powell & Weaver, 1986). The first, membrane 
rupture, has been shown to occur in bilayer lipid membranes for transmembrane 
potentials exceeding 200-500 mV applied for > 10 -4 sec. A second type of  membrane 
breakdown, a non-destructive reversible breakdown, has been shown to occur in 
bilayer lipid membranes whenever transmembrane potentials of  between 500 and 
1000 mV are applied for shorter times (<  10 -5 sec). This type of  breakdown manifests 
itself in a dramatic drop in the electrical resistance of  the membrane, but the 
membrane survives. For biological membranes, the reported voltage thresholds for 
electric breakdown are generally higher, at about  1 V (Benz et al., 1979). 

Many theories have been proposed regarding the mechanism by which cell 
membrane breakdown occurs. These theories examine the mechanical, electrical, 
and chemical factors which cause pores in fluids and membranes (both artificial 
and biological) to form, and once formed, to expand or contract. In a classic paper 
by Taylor & Michael (1973), it was suggested that axisymmetric holes in thin sheets 
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of fluid where surface tension forces predominate  will expand if their initial radii 
are larger than the thickness of  the sheet, while holes with radii smaller than this 
thickness will close. This is due to the action of  the interracial tension, which acts 
to reduce surface area. 

A similar approach  was used by Weaver (Weaver & Mintzer, 1981; Powell & 
Weaver, 1986). His theory expands on the work of  Litster (1975), who introduced 
the idea of  the Brownian motion of  molecules of  the surrounding media causing 
pores to form in bilayer membranes .  These pores are restrained by the mechanical  
forces at a pore 's  edge. The energy AE needed to create a pore of  radius r is the 
increase in energy associated with the creation of  the edge o f  the pore less the 
energy o f  the eliminated surface area: 

AE = 27ryr - 1rFr 2. (22) 

F is the bifacial energy per  unit area of  the membrane  and 3' is the strain energy 
per unit length of  the membrane  pore edge. Weaver added a term to this energy 
equation to include electrostatic energy effects which are associated with a t ransmem- 
brane potential  V,.: 

2 AE = 27r3'r - 1rr2(F + c~ Vm), (23) 

where a is a positive parameter  dependent  on the permittivities of  the membrane  
and the intracellular and extracellular fluids and the membrane  thickness 8,1. Thus, 
V,, tends to decrease the stability of  the membrane  against thermal fluctuations by 
decreasing the amount  of  energy required to form a pore. An applied V" also lowers 
the critical pore  radius beyond which mechanical  forces at the pore ' s  edge cannot 
restrain the pore  from expanding until cell rupture. 

It has been shown that the presence of  neighboring cells in a tissue prevents 
current from being diverted around a given cell, and instead forces more current 
to flow through the ends of  the cell. This effect is more pronounced the closer the 
neighboring cells are located. The same idea can be applied to a study of  the effects 
of  various other cellular environments on the imposed t ransmembrane  potential 
and thus the vulnerabilities of  various cells to breakdown.  

It seems reasonable that cells at the very edge of  an intact muscle would experience 
a lower t ransmembrane  potential than those in the interior since cells on the edge 
are exposed to the higher conducting fascial planes which short out the potential. 
The situation for cells adjacent  to cortical bone is exactly the opposite. The cortical 
bone, being less hydrated than extracellular fluid, is far more resistive. As a result, 
cells next to bone would experience a higher t ransmembrane  potential due to a 
greater amount  of  current flowing through the cell membranes.  Thus, it seems 
reasonable that the cells closest to the bone are more likely to be ruptured by 
non-thermal electrical forces than the cells adjacent to the fascial plane. 

These results suggest a pattern of  injury which correlates strongly with clinical 
observation. When the current path includes an upper  extremity, victims of  electrical 
t rauma have been found to develop a characteristic pattern of  tissue injury. In tissue 
locations far enough away from the surface contact points so that the local tem- 
perature is unaffected by intense skin heating, the muscle injury has been observed 
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to be the most severe around bone (Baxter, 1970; Hunt et  al., 1980) and in the 
cental core of  the muscle (Zelt et al., 1986). 

Conclusions 

We have applied the cable model to the cases of  a single elongated cylindrical 
cell and of  an array of  such cells to obtain a physically reasonable prediction of  
the induced transmembrane potential along the length of  the cell. The analysis 
indicates that cell size is very important in determining the magnitude of  the induced 
transmembrane potential experienced by cells in an imposed electric field. 

Once sinusoidal steady-state conditions are reached, the induced transmembrane 
potential is not a simple monotonic function of cell length. Rather, there is an 
optimum cell length-to-radius ratio which brings about the maximum induced 
transmembrane potential. If  the radius is held relatively constant, increases in cell 
length beyond the optimum bring about a decrease in the induced transmembrane 
potential. In addition, small changes in cell length centered about the length of  
maximum transmembrane potential can lead to significant changes in the induced 
transmembrane potential. Because the probability of  rupture is proportional  to the 
square of  the transmembrane potential, the susceptibility to rupture is strongly 
cell-size dependent.  

Because muscle and nerve cells are much larger than other cell types and thus 
generally develop larger transmembrane potentials in an applied field, they should 
be more vulnerable to injury. This prediction is consistent with clinical observation. 
In addition, it has been shown that the transmembrane potential at the ends of  a 
cell in a tissue increases with a decrease in extracellular space due to the decrease 
in extracellular resistivity. This helps explain the clinical observation that the central 
core of  a muscle and muscle adjacent to bone seem the most susceptible to damage. 
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